
RESEARCH ART ICLE

Cost-effectiveness of water-saving technologies
for restoration of tropical dry forest: a case study
from the Galapagos Islands, Ecuador
Luka Negoita1 , James P. Gibbs2 , Patricia Jaramillo Díaz1,3,4

Tropical dry forests are among the most threatened of ecosystems globally, especially on islands, where two key challenges face
efforts to restore them: (1) dealing with water scarcity and (2) reliably predicting costs and benefits of alternative approaches
given limited resources available for restoration. In this study, we evaluated the cost-effectiveness of using water-saving tech-
nologies (WSTs) that increase available water during tropical dry forest restoration efforts. Between 2014 and 2018, 4,983 seed-
lings of 29 woody species were planted across 16 sites in the Galapagos Islands, Ecuador. Seedlings were randomly assigned to a
combination of four WST treatments as well as a “no technology” control treatment; seedling survival and all planting costs
were subsequently monitored. When analyzing all species together we found that Groasis, Groasis + Hydrogel, and Cocoon
WST treatments generally had a significant and cost-effective positive effect on 2-year plant survival (95% credible highest den-
sity interval > 0). However, the extent of these effects on plant survival and cost-effectiveness varied by species and site due to
differences in plant survival. For example, Groasis or Groasis + Hydrogel were the most cost-effective restoration methods for
eight of the nine species analyzed independently, while the control treatment was most cost-effective for Opuntia echios var.
echios on Baltra Island. Overall, we found that despite their initial costs,WSTs can reduce costs by at least 34%when restoring
tropical dry forests in remote sites such as the Galapagos Islands and likely elsewhere in the arid tropics where water availabil-
ity limits plant growth.

Key words: cost analysis, ecosystem restoration, Galapagos Verde 2050, Groasis waterboxx, island conservation, plant
restoration

Implications for Practice

• Water-saving technologies (WSTs), such as the Groasis
Waterboxx can provide cost-effective improvements in
survival when planting tropical dry forest plant species,
especially in remote sites.

• These results can be scaled to entire islands and ecosys-
tems for providing cost-effective solutions to entire resto-
ration outcomes.

• The cost-effectiveness of using WSTs is often species-
and site-specific so an adaptive management approach
using preliminary trials is necessary for ensuring the most
effective application of these technologies.

Introduction

Tropical dry forests are among the most threatened terrestrial
ecosystems worldwide (Myers et al. 2000). Dry forest plant spe-
cies are particularly vulnerable on oceanic islands where up to
10% of all endemic plant species are threatened with extinction
(Caujapé-Castells et al. 2010). Restoration of these species faces
two key challenges: (1) the scarcity of water limits plant survival
in tropical dry forest ecosystems (Khurana & Singh 2001; Cabin
et al. 2002) and (2) resources for restoration that are limited and
must be used efficiently for successful large-scale restoration

planning (Bruner et al. 2004; McCarthy et al. 2012; Buddenha-
gen & Tye 2015).

The primary challenge for restoring tropical dry forests is the
scarcity and unpredictability of water availability because it is
necessary for ensuring the survival of planted seedlings
(Snell & Rea 1999; Khurana & Singh 2001; Tapia et al. 2019).
As a result, novel technologies that increase the efficiency of
water application in dry climates have been developed and are
now available (Liu et al. 2013; Hoff 2014). Referred to as
water-saving technologies (WSTs), these technologies ensure
that the water is supplied directly to the plant roots at a rate that
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the plants use the water so that it is not wasted through runoff.
WSTs function by either supplying water to plant roots through
a capillary wick from a collection tank, or through a polymer
powder that is mixed with the soil and its hydrophilic molecular
structure increases soil water availability (Kulkarni 2011; Liu
et al. 2013; Hoff 2014). The efficacy of using some of these tech-
nologies in tropical dry forest restoration; however, remains
understudied despite the water being a clear limiting factor.

Uncertainty around the perceived cost-effectiveness of WSTs
for many arid tropical plant species hinders tropical dry forest
restoration (Fajardo et al. 2013; Werden et al. 2018). In particu-
lar, estimating and optimizing the costs of scaling-up restoration
efforts from local-to-island- and ecosystem-scales in remote
sites remains an understudied challenge in tropical forest resto-
ration (Holl et al. 2003; Carrion et al. 2011; Holl 2017). Com-
bining active restoration with experimentation and monitoring
of both biological and financial metrics of success can enable
an adaptive management of dry forest restoration (Gibbs
et al. 1999; Keith et al. 2011; Bakker et al. 2018).

To address these questions, we used data from a case study
based in the Galapagos Islands, Ecuador, which represent a use-
ful system for studying these challenges of tropical dry forest res-
toration (Gillespie et al. 2020). Despite harboring extensive dry
forests, many have been profoundly altered by introduced pest
species such as goats, and, in some cases, historic land use
(Hamann 1981; Jäger et al. 2009; Restrepo et al. 2012), making
them high priorities for restoration efforts. Started in 2013 in col-
laboration with the Galapagos National Park Directorate
(GNPD), the Galapagos Verde 2050 (GV2050) project of the
Charles Darwin Foundation is primarily focused on testing the
effectiveness of WSTs in an adaptive management framework

to advance ecosystem restoration (Jaramillo et al. 2020). The
GV2050 project monitored 4,983 plantings of 29 tropical dry for-
est species on five islands, which enables a synthesis of the cost-
effectiveness of WSTs at the individual species and ecosystem-
level scales of restoration. Our objectives are to (1) test the effect
ofWSTs on tropical dry forest plant survival; (2) evaluate the rel-
ative cost-effectiveness of using WSTs for restoring dry forest
plant species; and (3) estimate the costs of scaling-up restoration
efforts to the entire islands and ecosystems.

Methods

Study Sites and Focal Species

The Galapagos Islands are located in the Pacific Ocean along the
equatorial line 1,000 km west of mainland Ecuador, South
America (0�440S, 90�190W; Fig. 1). The dry lowland zone
where the present study is focused experiences a median annual
rainfall of 227 mm, with 71% occurring during the wet season
months of January through May, leaving 7 months of the year
with less than 10 cm of total precipitation (Trueman & D’Ozou-
ville 2010). The El Niño Southern Oscillation (ENSO) can lead
to a large variation in rainfall around these median estimates,
with up to 3 m of precipitation in some years (Trueman &
D’Ozouville 2010). Within the archipelago, 16 sites of conser-
vation concern across six islands were identified based on
declines in keystone or endangered plant species for inclusion
in restoration trials. Within these study sites, two islands, Baltra
and Plaza Sur, were chosen for evaluating the costs of large-
scale restoration due to the island-wide habitat degradation of
these islands. The Baltra Island (0�270S, 90�160W) is located

Figure 1. Map of Galapagos Islands, Ecuador, and study islands.
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north of Santa Cruz Island with a maximum elevation of 30 m
and area of 26 km2. Baltra Island was used as a military base
in World War II and was cleared of native vegetation (Cayot
& Menoscal 1992; Snell et al. 1995). Plaza Sur Island
(0�350000S, 90�94800W) is also an arid, but smaller, island of
only 0.13 km2 and 23 m maximum elevation on the northeast
coast of Santa Cruz Island (Snell et al. 1995), and one of
major tourism importance, hosting one of the most heavily
visited sites in the archipelago. There, various factors have
led to a dramatic decline in the population of endemic Opun-
tia echios var. echios cacti on the island since the 1950s
(Sulloway & Noonan 2015). Prickly-pear cacti are a keystone
species that the endemic land iguanas (Conolophus subcrista-
tus) rely on as their primary food source on this island (Snell
et al. 1994; Sulloway & Noonan 2015) as well as a major
tourist attraction in the Galapagos, making both an environ-
mental and economic case for restoring and protecting the
ecosystem of this island (Epler 2007; Brewington 2013).

Experimental Treatments, Planting, and Monitoring

Three types ofWSTs (two types of water-boxes and one polymer
powder) and control plantings with no technology were used as
experimental treatments for evaluating the effect of WST on
plant survival and overall costs. EachWSTwas installed accord-
ing to established protocols (Table 1). A total of 4,983 individual
plants of 29 native or endemic tropical dry forest species were
planted using these treatments between 2014 and 2018. Planting
expeditions to sites were conducted opportunistically during this
period, with no bias towards any particular time of year, and all
seedlings were planted a minimum of two meters apart. Planting
depth depended on the species and size of each seedling, but was
based on ensuring roots were fully buried beneath the soil. Seeds
for propagating each species were sourced from the same sites
where they were later replanted. Each seed was germinated and
grown at the Charles Darwin Research Station on Santa Cruz
Island, Galapagos, for at least 1 year using standard propagation
procedures (Jaramillo et al. 2017). Each seedling was randomly
assigned a treatment based on the approximate ratio of one con-
trol for every seven technology treatments (693 controls,
367 Cocoon, 3,055 Groasis, and 868 Groasis + Hydrogel). This
unbalanced design was chosen due to the presumed advantage of
WSTs in reducing mortality when planting species of potential
conservation concern but did not impact the analysis or interpre-
tation of results. Wire fences were secured and maintained
around each individual plant on Plaza Sur and Baltra Islands to
prevent damage by native herbivores present at those sites. Each
planting was visited approximately every 3 months to monitor
survival from 2014 to 2020.

Analysis of Plant Survival

Weused a hierarchical Bayesian framework for analysis to incor-
porate random effects while generating probabilistic estimates of
the effect of planting treatments. Plant survival was used as the
metric to evaluate the efficacy and cost-effectiveness of each
treatment in this study because survival provides a simple but

direct link to restoration success. To account for the effect of nat-
ural water availability we used precipitation data from Santa
Cruz Island (Trueman &D’Ozouville 2010) to generate an index
of water availability over the duration of this study. This Stan-
dardized Precipitation Index (SPI) was calculated using available
precipitation data from 1970 to 2020 with a 7-month rolling win-
dow using the “SPEI” package in R (Lotsch et al. 2003; Vicente-
Serrano et al. 2010; Haverkamp et al. 2017).

Two logistic regression models were fit to evaluate both the
overall effect of treatments (all-species model) and the species-
specific effects of treatments (species-specific model) on plant
survival. In both cases, year survival was modeled as a function
of WST treatment with mean SPI as a covariate and the expedi-
tion in which individuals were planted as a random effect. Plant-
ing expedition was added to account for any non-independence
of plantings that occurred within the same planting expedition
(e.g. due to changing personnel). Mean SPI was calculated as
the mean SPI value across the first 2 years after planting or until
death if the plant survived less than 2 years. The all-species
model also included species as a random effect to account for
any unique species-level differences. These models were param-
eterized with Markov Chain Monte Carlo (MCMC) using the
“R2jags” package in R (Su & Yajima 2012). MCMC was run
with three chains for 20,000 iterations after a 5,000-iteration
burn-in. Convergence was ensured by checking that all R-hat
values were below 1.1. Non-informative priors were used for
the estimation of all parameter coefficients to ensure no bias
when generating these initial results. Finally, the survival of
each species by island by treatment combination was predicted
using the posterior distribution coefficients of the fixed-effect
model parameters (treatment and SPI).

A power analysis was conducted to ensure that only species
by island by treatment combinations that met adequate sample
sizes were included in the species-specific analysis (Supplement
S1). Eight species met these inclusion criteria, Acacia macra-
cantha, Castela galapageia, Lycium minimum, Parkinsonia
aculeata, O. echios var. echios, Senna pistaciifolia var. picta,
and Vallesia glabra var. glabra on Baltra Island, O. echios
var. echios on Plaza Sur Island, and Scalesia affinis ssp. affinis
on Santa Cruz Island (Table 2).

Cost-Effectiveness Analysis and Scaling Costs

To quantify the costs of restoration, the cost, and time of every
operation in our restoration process were recorded on a per spe-
cies per island per treatment basis (see Supplement S2 for a full
description of all cost assumptions and parameters used in these
predictions). Distributions of predicted potential costs were esti-
mated by combining data from all planting expeditions to date
(2014–2020). However, costs also depended on the length of a
planting expedition and the number of staff per expedition, but
those data were not always available. Thus, a bootstrapped sim-
ulation of costs was generated by varying the number of days
and number of staff per expedition. This simulation generated
a distribution of potential costs for each species by island by
treatment combination based on the full range of expedition sce-
narios (Supplement S2). Finally, the 95% highest density
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interval (HDI) of these cost distributions was extracted to
remove unlikely scenario cost estimates.

Cost distributions were then combined with the probabilistic
survival distributions predicted from the survival analysis by
dividing costs by survival probability. This yielded the expected
cost per surviving individual. An additional 10% mortality rate
was added to predicted survival when calculating these expected
cost distributions to account for mortality that could occur after
2 years of growth. The 80% HDI and highest density value
(HDV; analogous to the mode or estimate of highest probability)
were extracted for the distributions of expected costs and
survival rate.

The costs of scaling restoration to the entirety of Plaza Sur Island
or per hectare on Baltra Island were estimated by multiplying the
expected cost distribution of each species and treatment by the
number of additional plants needed to reach restoration targets.
The restoration target for Plaza Sur was derived from estimates of
the historic population density of Opuntias on Plaza Sur Island
(Sulloway & Noonan 2015). This yielded three different cost

scenarios for Plaza Sur Island (one for each treatment used).
For Baltra Island, a literature search was first conducted to
generate estimates on the historic composition and density
of species on similar but undisturbed arid habitats in the
Galapagos (sources from which estimates were extracted
and averaged: Racine & Downhower 1974; Reeder & Rie-
chert 1975; Hamann 1981). Four species were selected to
estimate cost scaling on Baltra: A. macracantha,
C. galapageia,O. echios var. echios, and P. aculeata (563 con-
trols, 334 Cocoon, 39 Cocoon + Hydrogel, 2,498 Groasis, and
617 Groasis + Hydrogel). Three species that had been planted
on Baltra were not included in this scaling estimation because
although those species have been recorded as native to Baltra
(L. minimum, S. pistaciifolia var. picta, and V. glabra var.
glabra), abundance estimates of those species in similar habi-
tats were not found in the literature. This suggests that those
species are relatively low in abundance and excluding them
should not significantly affect our final estimate of scaling up
restoration on Baltra Island. The expected cost distribution of

Table 1. Description of treatments used in this study.

Technology
Groasis Waterboxx

(“Groasis”)
Cocoon System
(“Cocoon”)

Hydrogel Polymer
(“Hydrogel”)

No Technology
(“Control”)

Description A polypropylene donut-shaped
container filled with water at
the time of planting that
subsequently collects water
from rain and dew. Seedlings
are planted in the center of the
container where they receive
water through a nylon wick in
the bottom of the container

A biodegradable donut-
shaped container that
only receives water at
the time of planting.
Seedlings are planted in
the center of the
container where they
receive water through
two nylon wicks

Hydrogel is a
biodegradable polymer
powder that can increase
the water-holding
capacity of the soil by up
to 400%, and thus
increase available water
to plants

Control plants were
planted in the ground
without the use of any
technologies

Characteristics • Increases soil-water
availability

• Protection from ground
herbivory

• Protection from overexposure
to sunlight

• Reusable, but must be removed
from each plant after several
years which generates an
added cost

• Increases soil-water
availability

• 99% biodegradable

• Increases soil-water
availability

• 100% biodegradable

—

Watering protocol Each Groasis was then filled with
approximately 15 L of water at
the time of planting and refilled
with water during subsequent
monitoring visits if the boxes
were empty. Groasis also
collects additional water from
rainfall and dew

Each Cocoon was filled
with 15 L of water once
at the time of planting,
but received no water
thereafter

The Hydrogel powder was
initially hydrated with a
ratio of 12.5 g per liter of
water and 1 L of this
solution was mixed with
the soil at the time of
planting

Control plants were
planted with
approximately 5 L of
water applied to the base
of the seedling and no
further water applied
after planting

Notes This treatment was used with
plantings from 2014 to 2018

This treatment was used
with plantings from
2016 to 2018

This treatment was used
exclusively on some
treatments in 2018 in
combination with
Groasis technologies, to
form an additional
treatment of Groasis +
Hydrogel

Controls were used from
2014 to 2018

References Liu et al. (2013), Hoff (2014) Abdullah (2017) Montesano et al. (2015),
El-Asmar et al. (2017)
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each treatment with the lowest median cost within each species
was summed to produce the overall restoration cost estimate
for each hectare of this island.

Results

Overall Water-Saving Technology Effects on Plant Survival

When used to model 2-year survival across all species, Groasis,
Groasis + Hydrogel, and Cocoon treatments all generated posi-
tive posterior effect sizes on plant survival (Fig. 2). Plants grown
with Groasis survived best with a median posterior coefficient of
3.13 (95% HDI = 2.81–3.47; 27.8% median survival ranging
from 9.1 to 60.1%). The Groasis with Hydrogel treatment yielded
the next greatest relative effect on plant survival with a median
posterior coefficient of 2.60 (95% HDI = 2.07–3.14; 18.5%
median survival ranging from 4.6 to 52%). Finally, plants grown
with Cocoon had the lowest survival with a relative median pos-
terior coefficient of 1.73 (95% HDI = 1.24–2.20; 8.7% median
survival ranging from 2 to 29.8%). The Cocoon with Hydrogel
treatment was only available for one species (Acacia macra-
cantha) and sowas not included in the aggregate analysis. Control
plantings overall had a median 2-year survival of 1.7% with a
95% HDI range of 0.6–4.5%. Mean SPI during the first 2 years
of growth had a significant, but negative effect on 2-year survival
(95% HDI = median of �2.65, ranging from �2.94 to �2.38).

When modeling the effect of treatment on the survival of each
species, six out of the nine species-by-island plantings survived
best under the Groasis treatment (Castela galapageia on Baltra,
Opuntia echios var. echios on Plaza Sur, Parkinsonia aculeata
on Baltra, Scalesia affinis ssp. affinis on Santa Cruz, Senna pis-
taciifolia var. picta on Baltra, and Vallesia glabra var. glabra on
Baltra) with a median predicted survival of 26, 63, 46, 4, 41, and
15%, respectively (Table 2; Fig. 3). Two out of these nine
species-by-island plantings survived best under the treatment
that combined Groasis with Hydrogel (A. macracantha on Bal-
tra and Lycium minimum on Baltra) with a median predicted

survival of 55.7 and 63.8%, respectively (Table 2; Fig. 3). One
of the species-by-island planting combinations survived best
under the control treatment (O. echios var. echios on Baltra)
with a median predicted survival of 77% (Table 2; Fig. 3).

Cost-Effectiveness of Water-Saving Technologies by Species

In all nine species-by-island planting combinations, those treat-
ments that yielded the highest survival rates also yielded the
lowest expected cost per surviving adult (Table 2; Fig. 3). Aca-
cia macracantha on Baltra Island was most cost-effective when
planted with Groasis + Hydrogel, with an expected cost esti-
mate HDV of $31 per surviving adult (80% HDI = $19.38–
$125). Planting this species without technologies yielded an
estimated survival rate lower than 2%, which generated an
expected cost estimate HDV of $862 per surviving adult (80%
HDI = $16.19–$14,983). Castela galapageia on Baltra Island
was most cost-effective when planted with Groasis, with an
expected cost estimate HDV of $43 per surviving adult (80%
HDI = $20–$733). Planting this species without technologies
yielded no surviving plants. Lycium minimum on Baltra Island
was most cost-effective when planted with Groasis + Hydrogel,
with an expected cost estimate HDV of $29.53 per surviving
adult (80% HDI = $19.15–$81). Planting this species without
technologies yielded an estimated survival rate lower than 1%,
which generated an impractically large expected cost. Opuntia
echios var. echios on Baltra Island was most cost-effective when
planted without technologies, with an expected cost estimate
HDV of $67.45 per surviving adult (80% HDI = $60.51–
$105.93), while this species on Plaza Sur Island was most
cost-effective when planted with Groasis with an expected
cost estimate HDV of $217.81 per surviving adult (80%
HDI = $123.23–$293.81). Parkinsonia aculeata on Baltra
Island was most cost-effective when planted with Groasis, with
an expected cost estimate HDV of $215 per surviving adult
(80% HDI = $15.67–$400). Planting this species without tech-
nologies yielded an estimated survival rate less than 1%, which
generated an impractically large expected cost. Scalesia affinis
ssp. affinis on Santa Cruz Island was most cost-effective when
planted with Groasis, with an expected cost estimate HDV of
$552.72 per surviving adult (80% HDI = $95.86–$2,388.62).
Planting this species without technologies yielded an estimated
survival rate less than 1%, which generated an impractically
large expected cost. Senna pistaciifolia on Baltra Island
was most cost-effective when planted with Groasis, with
an expected cost estimate HDV of $30 per surviving adult
(80% HDI = $17.50–$578). Planting this species without tech-
nologies yielded no surviving plants. Finally, V. glabra var.
glabra on Baltra Island was most cost-effective when planted
with Groasis, with an expected cost estimate HDV of $114 per
surviving adult (80% HDI = $67.41–$229). Planting this spe-
cies without technologies yielded no surviving plants.

Estimation of Large-Scale Restoration Costs

The restoration target forO. echios var. echios (hereafter “Opun-
tia”) on Plaza Sur Island was set at 2,000 mature Opuntia trees

Cocoon

Groasis

Groasis + Hydrogel

0 1 2 3 4

Posterior effect size
(Median ± 95% CI)

Figure 2. Posterior relative effect size of planting treatment (water-saving
technology) on 2-year survival of 29 dry tropical forest species native or
endemic to Galapagos, Ecuador. Sample size = control = 693,
Cocoon= 367, Groasis= 3,055, Groasis + Hydrogel= 868. The reference
category is based on control effects. Effect sizes derived from technology-
specific coefficients from logistic hierarchical Bayesian model (see Methods
section).
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Figure 3. Expected cost of reaching adult stage for eight tropical dry forest species of the Galapagos Islands. HDV (highest-density value) represents the value
with the highest probability. The 80%HDI (highest-density interval) represents the interval of estimates that contain 80% of the most probable values. The x-axis
of expected cost is log-scaled. Some cost estimates are missing in the cases where low survival leads to impractically high-cost estimates that are impossible to
approximate with any accuracy.
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(Sulloway &Noonan 2015). A recent survey indicated 426 orig-
inal remaining Opuntias (Jaramillo et al. 2017) and 448 surviv-
ing Opuntias that had been planted by GV2050 so far. If the
surviving Opuntias already planted experience a 10% mortality
until maturity, 1,171 Opuntias would be needed to reach a
restoration target of 2,000 individuals. Groasis was the most
cost-efficient technology for reaching this restoration target,
estimated at costing an HDV of $255,053 ranging from
$144,302 to $344,066 (80% HDI) compared to an HDV of
$384,140 or $508,056 if planting without a technology or with
Groasis + Hydrogel, respectively (Fig. 4).

The restoration targets for Baltra Island were set, per hectare,
at 400 individuals of C. galapageia, 60 individuals of
A. macracantha, 343 individuals of O. echios var. echios, and
60 individuals of P. aculeata. Castela galapageia and
P. aculeatawere most cost-effective when planted with Groasis,
A. macracanthawhen planted with Groasis + Hydrogel, andO.
echios var. echios when planted without any technology
(Table 2). In total, the expected cost of restoration per hectare
on Baltra was estimated at an HDV of $74,848 ranging from
$34,344 to $675,646 (80% HDI) (Fig. 4). Extrapolating this to
the entire 2,072 ha island yields an estimated HDV of $155 mil-
lion. However, re-establishing patches of plant communities on
only a portion of the total island area could subsequently serve
as colonization nuclei to recolonize the remainder of the island
over time (Corbin & Holl 2012). In the scenario that only 10%
of the total area of the island is manually restored in this way,
the estimated HDV would be $15.5 million.

Discussion

By increasing plant survival, WST in general provided a cost-
effective improvement over not using these technologies in
restoring tropical dry forest plant species in Galapagos despite
the higher initial costs of using WST. These results were most
evident when scaling the use of these technologies to an entire
island or ecosystem level, but were often species- or site-specific
due to a high level of variability in outcomes driven by variation
in plant survival. This is a substantive finding given that the
up-front costs of tools such as WSTs may be perceived as
an impediment for restoration projects (Tye 2006; McCarthy
et al. 2012; Mappin et al. 2019). Our findings are in line
with other studies that evaluated WSTs for tropical dry forest
restoration (Fajardo et al. 2013).

Despite the general positive effect of WSTs on plant survival,
the technologies were not equally beneficial among species. The
Groasis Waterboxx on its own yielded the highest rates of sur-
vival compared to other technologies, and this technology was
also part of the most cost-effective solutions for eight of the nine
species by island evaluations. Groasis has several potential
advantages over Cocoon because it continues to accumulate
water after planting and it also protects seedlings from the dry-
ing effects of direct sunlight and herbivory (Liu et al. 2013;
Hoff 2014). No previous studies to our knowledge have directly
compared the Groasis and Cocoon technologies, and we found
that the Cocoon system is not as effective as Groasis. However,
its ability to biodegrade makes it an ideal candidate for use in

$74,848

$384,140

$255,053

$508,056

Plaza Sur Island restoration (per 1,171 Opuntia echios)

Baltra Island restoration (per hectare, four species)

$0 $500,000 $1,000,000 $1,500,000

Best treatments

Control

Groasis

Groasis + Hydrogel

Expected cost (HDV ± 80% HDI)

Figure 4. Estimated scaled costs for restoring Baltra and Plaza Sur Islands. Baltra is based on the cost of restoring four species per hectare using the most cost-
effective treatments for each species. Plaza Sur is based on the cost of restoring 1,171 additional adult Opuntia echios var. echios trees using three potential
treatments. HDV (highest density value) represents the value with the highest probability. Eighty percent HDI (highest density interval) represents the interval of
estimates that contain 80% of the most probable values.
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especially remote sites where plantings cannot be easily
accessed to remove the technology as is required with Groasis.
Hydrogel was not used on its own in this study but adding it to
Groasis was onlymarginally cost-effective for two species (Aca-
cia macracantha and Lyciumminimum). This result is consistent
with Fajardo et al. (2013), who found that Hydrogel alone was
more cost-effective than combining it with other treatments.
Further work needs to be performed to evaluate the use of
Hydrogel because it may not always be beneficial (Ruthrof
et al. 2010; Werden et al. 2018). The quantity and method
of how Hydrogel is applied to the soil may be a critical aspect
of its effectiveness (El-Asmar et al. 2017).

Species- and island-specific differences also determined the
context in whichWSTs were most effective. WSTs are designed
to aid plant growth and survival for species that cannot access
sufficient water in their environment (Liu et al. 2013;
Groasis® 2019). Our findings support this because the Opuntia
tree cactus, with clear adaptations for water stress (Racine &
Downhower 1974; Hicks &Mauchamp 1996), was the only spe-
cies studied that did not show a positive effect of WST on one of
the islands where it grows, and showed only a minor effect on its
other island. WSTs also tended to be most cost-effective in
remote sites or for species where high fixed costs outweigh the
additional costs of using these technologies. In other words, spe-
cies and islands with high costs in seed collection, nursery care,
and transportation required a lower survival advantage for tech-
nologies to be cost-effective. For example, planting Opuntias
with the Groasis technology on the remote island of Plaza Sur
required a minimum plant survival that is 42% greater than con-
trol plantings for these technologies to be cost-effective. This
contrasts with the more accessible Baltra Island where survival
using technology treatments must be at least 200–500% greater
than control treatments for those technologies to be cost-
effective.

Nonetheless, much variation in the estimated expected costs
of restoring tropical dry forest species in the Galapagos
was driven by variation in survival rates. For example,
S. pistaciifolia when planted with Groasis had an expected cost
that ranged at least 33-fold ($17.50–$578) and its predicted sur-
vival had a similar large variation ranging from 3.6 to 90%, com-
pared to only a range of $16.69–$27.90 in the costs of planting
one individual. This variation in survival may be driven by mul-
tiple environmental conditions in tropical dry forests aside from
water availability, including herbivory and nutrient availability
(Bhadouria et al. 2017), so it is important that restoration pro-
jects begin with pilot experiments in whichWSTs are first tested
with all focal species at the study sites that are monitored for a
minimum of several years (Khurana & Singh 2001; Murray &
Marmorek 2004). An adaptive management approach can be
used to initiate restoration in cases where urgent intervention is
necessary by adjusting the experimental design as results
become available (Walsh et al. 2012).

Scaling Restoration Costs

Relatively few studies in tropical dry forest restoration estimate
costs despite its importance for long-term planning and

conservation decision-making (Cook et al. 2013; Palma & Laur-
ance 2015; Dimson & Gillespie 2020). In this study, we esti-
mated the costs of expanding restoration to island- and
ecosystem-level scales by multiplying the expected costs of
restoring an individual plant by the number of individuals
required to meet restoration targets. On Baltra Island, our esti-
mated expected cost per hectare of restoration using the most
cost-effective treatment combinations is comparable to other
estimates of tropical dry forest restoration (Powell et al. 2017).
More importantly, our estimates suggest that WSTs can help
save hundreds of thousands of dollars as is the case on Plaza
Sur Island (34% reduction in costs), or make the difference
between feasible and infeasible restoration by increasing sur-
vival from zero as is the case for the four species used on Baltra
Island. Furthermore, as at the individual plant level, we found a
large variation in expected costs when scaling up to the island-
or ecosystem-level. For example, when using Groasis on
Plaza Sur, the 80% HDI ranged from $144,302 to $344,066
(57 – 135% of the HDV). Similar, but to a greater extent, restor-
ing four target species per hectare on Baltra Island using the
most effective technology treatments ranged from 46 to 903%
of the HDV. The variability associated with the benefits and
cost-effectiveness of these technologies emphasizes the impor-
tance of using pilot studies designed to test the effectiveness of
each technology on the focal species and restoration sites before
implementing large-scale use. Restoration projects should also
put more importance on recording and evaluating restoration
costs to estimate the total costs of reaching restoration targets
(Naidoo et al. 2006; Dimson & Gillespie 2020). Reporting
this variation in potential costs can allow scientists and deci-
sion makers to evaluate and compare the associated risks with
the potential ecologic benefits using decision analyses
(Wade 2000; Falcy 2016).

Future Work

Estimating accurate costs of restoration at the island or ecosystem
scale also depends on accurate restoration targets (White&Walker
1997; Bush et al. 2014). Our current restoration targets were gen-
erated by aggregating together available data from multiple his-
toric studies across the Galapagos. Future work should directly
measure the abundance of species in comparable reference ecosys-
tems for more accurate restoration targets (DPNG 2014).

Another aspect of this study that could be improved relates
to volumes of water supplied between the controls and treat-
ments at the time of planting and during subsequent monitor-
ing visits. Although each technology requires a slightly
different volume of water based on its specific protocol and
shape (Jaramillo et al. 2020), control plantings should receive
an amount of water that is comparable to technology treat-
ments to ensure WST benefits are not solely the result of dif-
ferences in water application. Control treatments did not
receive any water after initial planting, so this could be one
reason WST treatments were associated with greater plant
survival. Nonetheless, our current results provide an essential
proof-of-concept on the value of evaluating novel WSTs for
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tropical dry forest restoration and estimating the costs and
benefits of using these tools.

Finally, the current analysis and cost evaluation is only based
on the first 2 years of plant survival (Powell et al. 2017). Con-
tinuing the long-term GV2050 project will provide additional
data for increasing the accuracy of these evaluations. This is par-
ticularly important in the context of substantial inter-annual var-
iation in precipitation that occurs in Galapagos that will
influence outcomes of the plant species evaluated, many of
which are long-lived.

Overall, our findings generally corroborate previous studies
that demonstrated a positive effect of WSTs on plant survival,
but our analysis also indicated that use of WST’s can dramati-
cally reduce large-scale restoration costs. WSTs therefore have
important implications for improving the future of active resto-
ration and reforestation of tropical dry forests worldwide
(Griscom & Ashton 2010).
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